Bench Test Procedure for Hydraulic Piston Pumps {5070} Caterpillar


Bench Test Procedure for Hydraulic Piston Pumps {5070}

Usage:

5230B 4HZ
Excavator
365B (S/N: AGD1-UP; CFJ1-UP; CTY1-UP; 9PZ1-UP)
365BL (S/N: 9TZ1-UP)
365BL Series II (S/N: JMB1-UP; PEG1-UP; SDL1-UP; DER1-UP)
365C (S/N: ELC1-UP; GWC1-UP; MEM1-UP; FEN1-UP; PAR1-UP; MCS1-UP; MCY1-UP)
374D (S/N: PJA1-UP; PAP1-UP)
5110B (S/N: AAA1-UP; AAK1-UP; AAT1-UP)
5230B (S/N: 4HZ1-UP)

Introduction

Table 1
Revision  Summary of Changes in REHS1478 
11  Updated Specification Tables. 
10  Added Blank Specification Table to document. 
Updated Specification Tables.
Updated values in Table 10.
09  Added part number 369-9676 Piston Pump Gp. to document. 
08  Removed Fabricated Tooling Section. 
Included tooling 457-2323 in Table14
07  Updated Contact Information in introduction. 
Added "Canceled Part Numbers and Replaced Part Numbers" section to document.
Added REHS1761 "Required Tooling for Bench Testing Hydraulic Components" to "References" section of document.

© 2017 Caterpillar All Rights Reserved. This guideline is for the use of Cat dealers only. Unauthorized use of this document or the proprietary processes therein without permission may be violation of intellectual property law. Information contained in this document is considered Caterpillar: Confidential Yellow.

This Special Instruction includes test procedures for piston pumps. This Special Instruction also provides specifications. The technician should have a good understanding of hydraulic piston pumps. The technician should be educated in the operation of the hydraulic test bench. The test benches in this document are available through the Caterpillar Service Tool Division. Gather all necessary tooling before you need to hook up the pump. Some of the required tooling appears in a table at the end of this document. There are many possible variations of tooling that could be used. Not every possible variation can be listed.

For technical questions when using this document, work with your Dealer Technical Communicator (TC).

To report suspected errors, inaccuracies, or suggestions regarding the document, submit a form for feedback in the Service Information System (SIS Web) interface.

Canceled Part Numbers and Replaced Part Numbers

This document may not include all Canceled part numbers and replaced part numbers. Use NPR on SIS for information about Canceled part numbers and replaced part numbers. NPR will provide the current part numbers for replaced parts.

Safety



Illustration 1g02139237

------ WARNING! ------

Personal injury or death can result from improperly checking for a leak.

Always use a board or cardboard when checking for a leak. Escaping air or fluid under pressure, even a pin-hole size leak, can penetrate body tissue causing serious injury, and possible death.

If fluid is injected into your skin, it must be treated immediately by a doctor familiar with this type of injury.


------ WARNING! ------

Pump test pressures in this guideline may exceed the normal operating range of the hydraulic test hoses utilized when connecting the tested pump to the test bench. However, the order of magnitude of these pressures is significantly below the burst strength of the Caterpillar "XT6" product.

High pressure oil can escape through improperly assembled hoses and fittings. High pressure oil can also escape through poorly maintained hoses and fittings. High pressure oil may also leak through hose that has become damaged over the life of the hose due to the pressure levels that occur during test bench operation.

Personal injury or death can result from improper hose & fitting inspection or improper hose replacement procedures. Escaping fluid under pressure can penetrate body tissue causing serious injury, and possible death.

Thoroughly inspect all testing hoses, fittings, and quick disconnects prior to any testing operation. Check the assembly date tag or hose assembly log date for a hose life indicator. Replace all Test Bench hoses at a minimum of every 2 years or earlier if the hose or fittings appear to be damaged.


------ WARNING! ------

Hot oil and hot components can cause personal injury. Do not allow hot oil or hot components to contact skin.


Summary

This procedure is specific to the type of pump and the type of control. Refer to the test specifications and the tooling at the end of this document.

Note: A paper copy of this document may not be the latest version. Go to the Service Information System (SIS) to view the latest version.

References

Table 2
References 
Media Number  Title 
REHS1761  Required Tooling for Bench Testing Hydraulic Components 
SEBF8810  Hydraulic Pump, Motor, and Cylinder Bench Test Procedure Reference Manual 
SEHS8892  Operating Instructions for Caterpillar 1U-9400 Series Hydraulic Test Center 
NEHS0563  Tool Operating Manual for 9U-5000 Series Hydraulic Test Bench 

Connections for the Caterpillar Hydraulic Test Center



Illustration 2g01063311
Connections for the Test Center
(1) Flow control for discharge
(2) "F3" flow meter inlet
(3) "F4" flow meter inlet
(4) Oil supply from the auxiliary pump
(5) "F3" inlet for the flow meter with flow limiter
(6) "F3"outlet for the flow meter with pressure control
(7) Load sensing pressure
(8) Signal pressure
(9) "F4" outlet for the flow meter
(10) Return to tank
(11) Connections for case drain
(12) Oil supply


Illustration 3g01063312
Control and Gauges for the Test Center
(13) Meter for speed and torque
(14) Gauge for signal pressure
(15) Control for signal pressure
(16) Pressure gauge for auxiliary pump
(17) Auxiliary pump flow
(18) "F3" discharge pressure gauge
(19) "F3" discharge flow
(20) "F4" discharge pressure gauge
(21) "F4" discharge flow
(22) Auxiliary pump flow control
(23) "F3" margin pressure
(24) "F3" Load control for discharge pressure
(25) "F4" Load control for discharge pressure

Connections for the Caterpillar Hydraulic Test Bench



Illustration 4g01063314
Connections for the Test Bench
(26) "Flow meter 1" loop and "Flow meter 2" loop
(27) Oil Supply


Illustration 5g01093468
Connections for the Test Bench
(28) "Flow meter 2" loop
(29) "Flow meter 1" loop
(30) "Flow meter 2" outlet
(31) Signal pressure line
(32) "Flow meter 2" inlet
(33a) "Flow meter 1" outlet
(33b) Outlet for the auxiliary oil supply
(34) Inlet for the auxiliary oil supply
(35) "Flow meter 1" inlet


Illustration 6g01063316
Control and Gauges for the Test Bench
(36) Auxiliary oil supply pressure
(37) Signal pressure
(38) Control for signal pressure
(39) "Flow meter 1" discharge pressure
(40) Control for auxiliary oil supply pressure
(41) "Flow meter 2" discharge pressure
(42) Auxiliary oil supply control
(43) "Flow meter 2" discharge flow
(44) Discharge flow for auxiliary pump
(45) "Flow meter 1" discharge flow
(46) "Flow meter 1" load control
(47) Speed and direction control
(48) "Flow meter 2" load control

Port Locations



Illustration 7g01146782
Typical port locations and adjustments.
(49) Suction port
(50) Discharge port
(51) Pressure port for load sensing
(52) Pressure port for powershift
(53) Case drain port
(54) Front pump pressure port for destroke
(55) Rear pump pressure port for destroke
(56) Adjustment screw for margin pressure
(57) Adjustment screw for constant power
(58) Adjustment screw for maximum angle
(59) Adjustment screw for minimum angle


Illustration 8g01260251
Hydraulic schematic
(49) Suction port
(50) Discharge port
(51) Pressure port for load sensing
(52) Pressure port for powershift
(53) Case drain port
(54) Front pump pressure port for destroke
(55) Rear pump pressure port for destroke
(56) Adjustment screw for margin pressure
(57) Adjustment screw for constant power

4C-3582 Load Sensing Valve



Illustration 9g01146781
4C-3582 Load Sensing Valve


Illustration 10g01146789
4C-3582 Load Sensing Valve


Illustration 11g01146791
Schematic for 4C-3582 Load Sensing Valve
(60) Outlet port
(61) Adjustment for the discharge flow
(62) Inlet port
(63) High-pressure port
(64) Adjustment for the discharge pressure
(65) Low-pressure port
(66) Pressure port for load sensing


Illustration 12g01146792
4C-3582 Load Sensing Valve and 1U-5796 Pressure Differential Gauge
(60) Outlet port
(61) Adjustment for the discharge flow
(62) Inlet port
(63) High-pressure valve port
(64) Adjustment for the discharge pressure
(65) Low-pressure valve port
(66) Pressure port for load sensing
(67) Pressure differential gauge group
(68) Low-pressure gauge port
(69) High-pressure gauge port

  1. Connect a 1 inch high-pressure "XT6" hose from the pump discharge port to inlet port (62) on the 4C-3582 Load Sensing Valve.

  2. Connect a 1 inch high-pressure "XT6" hose from outlet port (60) on the 4C-3582 Load Sensing Valve to the flow meter inlet on the test bench.

  3. Connect a 6D-7726 Hose Assembly to the pressure port for load sensing (66). Connect the other end of 6D-7726 Hose Assembly to the pressure port for load sensing (51) on the pump.

    Note: Do not use 1U-5754 Hose Assembly or 1U-5755 Hose Assembly for load sensing signal lines. The flow rate through these hoses will not compensate for the possible leakage through the control valve. Erratic readings will result.

  4. Connect the 1U-5796 Pressure Differential Gauge Group (67) to the high-pressure port (63) and low-pressure port (65) on the 4C-3582 Load Sensing Valve. The port marked "hi" (69) on the 1U-5796 Pressure Differential Gauge Group should be hooked up to the port marked "hi" (63) on the 4C-3582 Load Sensing Valve. The port marked "low" (68) on the 1U-5796 Pressure Differential Gauge Group should be hooked up to the port marked "low" (65) on the 4C-3582 Load Sensing Valve.

    Note: The ports marked "low" (65) and "sense line" (66) on the 4C-3582 Load Sensing Valve are reading the same pressure.

Pump Setup

  1. Each pump must be tested separately. To isolate the pump not being tested, make sure the pump powershift port (52) is open to the atmosphere.

  2. Connect the pump powershift port (52) of the pump being tested to the test bench signal pressure supply.

  3. Connect a 177-7860 Hose Assembly from a pressure fitting on the isolated pump discharge port to the isolated load sensing port (51).

  4. Connect in-line flow meters to the front and rear pump case drain ports (53). Connect the hose assemblies to the flow meters by using the proper fittings to direct the flow to the drain in the test bed.

  5. Install pressure taps to the pump destroke pressure ports (54) and (55). Connect a 8T-0861 Pressure Gauge to pressure port for destroke (54) and (55).

  6. Purge all air from the suction line before rotating the pump. Loosen the suction hose at the pump until oil leaks from the connection. Tighten the suction hose.

  7. Fill the pump case with oil before rotating. Pour oil directly into both case drain ports until the case is full.

  8. Do not rotate the pump in the wrong direction. The correct direction of rotation will be stated on the pump. The direction of rotation is viewed from the input shaft end. Visually check for proper rotation of the test bench.

Test Procedure

The contamination level of the hydraulic oil in the test bench should be ISO 16/13 or better. The oil in the test bench should be one of the following.

  • SAE 10W at 50 °C (122 °F) or

  • Mobil DTE-11 at 46 °C (115 °F)


Illustration 13g01261268
Constant horsepower control characteristics
(Q) Discharge flow
(P) Discharge pressure

  1. Start rotating the pump according to the RPM in Step 1 of the test specifications. Listen for abnormal noise. Verify flow from the pump. Verify that all connections are tight. Check for leaks around shaft seals. Check for leaks around the control valve.

    The isolated pump should destroke when a load is applied. Turn the load control for the discharge pressure "clockwise" until flow is zero. Monitor the discharge pressure. The pressure should stabilize. If the pressure continues to rise, stop the test. The isolated pump regulator may not be mechanically feasible.

  2. This step will verify the maximum displacement setting of the pump.

    Slowly increase the pump input RPM to the value in Step 2 of the test specifications. If the actual flow is less, then the value in Step 2 of the test specifications, adjust the screw for the maximum angle (58).

  3. This step will verify the margin pressure setting of the pump.

    Slowly adjust the input RPM to the value in Step 3. The discharge flow is adjusted by using the 4C-3582 Load Sensing Valve. Bench circuitry will be used for flow limiting when using a 1U-9400 Test Center. Adjust the discharge flow according to the values in Step 3 of the test specifications. Adjust the discharge pressure according to the values in Step 3 of the test specifications. Adjust the screw for margin pressure (56) to the value in Step 3 of the test specifications. The margin pressure will be displayed on the 1U-5796 Pressure Differential Gauge (67).

    Note: The margin pressure may change as discharge pressure changes. Adjust margin pressure at Step 3 within operating conditions only.

  4. This step will verify the first point of the constant horsepower setting on the pump.

    Check the destroke point of the pump. Slowly increase pump discharge pressure to the value in Step 4 of the test specifications. Turn the control for pump discharge pressure (64) clockwise. Monitor the destroke pressure as the pump pressure is being increased. The destroke pressure (54 or 55) of the tested pump should be monitored. The gauge will read zero until you reach the destroke point. Once the destroke point is reached, pressure will begin to rise. Destroke pressure should start to rise when the discharge pressure in Step 4 is reached. If the destroke pressure begins to rise before the pump discharge pressure in Step 4 of the test specifications, turn the adjustment screw for constant power (57) accordingly. If the discharge pressure begins to rise after the pump discharge pressure in Step 4 of the test specifications, turn the adjustment screw for constant power (57) accordingly.

  5. This step will verify the second point of the constant horsepower setting on the pump.

    Increase the pump discharge pressure to the values in Step 5 of the test specifications. Compare the discharge flow to the value in Step 5. This step verifies the power shift operation of the pump.

    ------ WARNING! ------

    Pump test pressures in this guideline may exceed the normal operating range of the hydraulic test hoses utilized when connecting the tested pump to the test bench. However, the order of magnitude of these pressures is significantly below the burst strength of the Caterpillar XT6 product.

    High pressure oil can escape through improperly assembled hoses and fittings. High pressure oil can also escape through poorly maintained hoses and fittings. High pressure oil may also leak through hose that has become damaged over the life of the hose due to the pressure levels that occur during test bench operation.

    Personal injury or death can result during adjustment of the high pressure relief valve if recommended hose maintenance practices are not followed. Escaping fluid under pressure can penetrate body tissue causing serious injury, and possible death.

    Adjustment of the high pressure cut or pressure override valve shall only be performed when the pump is operating at a zero discharge pressure condition. Continuation of the pump test procedure can be resumed when this high pressure adjustment is completed.


  6. This step will verify pump efficiency.

    Slowly adjust the input RPM to the value in Step 6. Increase the pump discharge pressure to the value in Step 6 of the test specifications. Compare the actual values from the case drain with the values in Step 6 of the test specifications. This value is an indication of the efficiency. If the case drain is more than the value in Step 6 of the test specifications, the pump may not be mechanically feasible. Internally inspect the pump.

Complete steps 1 through 6 on the other half of the tandem pump. Be sure to match the margin pressure and destroke pressure of the two pumps as closely as possible. Match the pump that is being tested to correct specifications. Some of the specifications are different between the front and the rear pump.

------ WARNING! ------

Hot oil and hot components can cause personal injury. Do not allow hot oil or hot components to contact skin.


Reduce RPM and all pressures to zero. Remove the components from the test bench. Drain the oil from the pump. Plug all of the ports.

Test Specifications

Table 3
Part Number  Rotation  Step  Input Speed  Discharge Pressure kPa (psi)  Discharge Flow Lpm (gpm)  (1)Load Pressure kPa (psi)  (2)Margin Pressure kPa (psi)  Powershift Pressure kPa (psi)  (3)Max Case Drain Flow Lpm (gpm) 
__________  ______  ________  __________  __________      __________   
2 ________ __________  __________      __________   
3 ________ __________  __________  __________  __________  __________   
4 ________ __________  __________      __________   
5 ________ __________  __________      __________   
6 ________ __________  __________      __________  __________ 
(1) Not a spec. For reference only.
(2) Margin pressure = pump discharge pressure minus load pressure.
(3) Value given is for each rotating assembly

Table 4
Part Number  Rotation  Step  Input Speed  Discharge Pressure kPa (psi)  Discharge Flow Lpm (gpm)  (1)Load Pressure kPa (psi)  (2)Margin Pressure kPa (psi)  Powershift Pressure kPa (psi)  (3)Max Case Drain Flow Lpm (gpm) 
146-5153  CCW  600  132±6 (35±2)      2000 (290)   
2 725 160±6 (42±2)      2000 (290)   
3 725 20000 (2900)  80 (21)  18050 (2618)  1950±50 (283±7)  2000 (290)   
4 725 26800 (3887)  155±6 (41±2)      2000 (290)   
5 725 30000 (4351)  125±6 (33±2)      2000 (290)   
6 725 35000 (5076)  113±6 (30±2)      2000 (290)  8.5 (2.2) 
(1) Not a spec. For reference only.
(2) Margin pressure = pump discharge pressure minus load pressure.
(3) Value given is for each rotating assembly

Table 5
Part Number  Rotation  Step  Input Speed  Discharge Pressure kPa (psi)  Discharge Flow Lpm (gpm)  (1)Load Pressure kPa (psi)  (2)Margin Pressure kPa (psi)  Powershift Pressure kPa (psi)  (3)Max Case Drain Flow Lpm (gpm) 
153-8181  CW  600  150±10 (40±3)      2060 (290)   
2 725 181±10 (48±3)      2060 (290)   
3 725 20000 (2900)  90 (24)  18100 (2625)  1900±50 (275±7)  2060 (290)   
4 725 22800 (3306)  173±10 (46±3)      2060 (290)   
5 725 28000 (4061)  137±10 (36±3)      2060 (290)   
6 725 35000 (5076)  106±10 (28±3)      2060 (290)  10 (2.6) 
(1) Not a spec. For reference only.
(2) Margin pressure = pump discharge pressure minus load pressure.
(3) Value given is for each rotating assembly

Table 6
Part Number  Rotation  Step  Input Speed  Discharge Pressure kPa (psi)  Discharge Flow Lpm (gpm)  (1)Load Pressure kPa (psi)  (2)Margin Pressure kPa (psi)  Powershift Pressure kPa (psi)  (3)Max Case Drain Flow Lpm (gpm) 
158-9066  CW  600  120±6 (32±2)      2110 (306)   
2 725 181±10 (48±3)      2110 (306)   
3 725 20000 (2900)  90 (24)  18100 (2625)  1900(275)  2110 (306)   
4 725 26800 (3887)  140±6 (37±2)      2110 (306)   
5 725 30000 (4351)  125±6 (33±2)      2110 (306)   
6 725 35000 (5076)  105±6 (28±2)      2110 (306)  7.7 (2.0) 
(1) Not a spec. For reference only.
(2) Margin pressure = pump discharge pressure minus load pressure.
(3) Value given is for each rotating assembly

Table 7
Part Number  Rotation  Step  Input Speed  Discharge Pressure kPa (psi)  Discharge Flow Lpm (gpm)  (1)Load Pressure kPa (psi)  (2)Margin Pressure kPa (psi)  Powershift Pressure kPa (psi)  (3)Max Case Drain Flow Lpm (gpm) 
214-1034  CCW  600  132±6 (35±2)      2000 (290)   
2 725 160±6 (42±2)      2000 (290)   
3 725 20000 (2900)  80 (21)  18050 (2618)  1950±50 (283±7)  2000 (290)   
4 725 26800 (3887)  155±6 (41±2)      2000 (290)   
5 725 30000 (4351)  125±6 (33±2)      2000 (290)   
6 725 35000 (5076)  113±6 (30±2)      2000 (290)  8.5 (2.2) 
(1) Not a spec. For reference only.
(2) Margin pressure = pump discharge pressure minus load pressure.
(3) Value given is for each rotating assembly

Table 8
Part Number  Rotation  Step  Input Speed  Discharge Pressure kPa (psi)  Discharge Flow Lpm (gpm)  (1)Load Pressure kPa (psi)  (2)Margin Pressure kPa (psi)  Powershift Pressure kPa (psi)  (3)Max Case Drain Flow Lpm (gpm) 
225-4493  CW  600  132±6 (35±2)      1630 (236)   
2 725 163±6 (43±2)      1630 (236)   
3 725 16000 (2321)  81 (21)  18050 (2618)  1950 (283)  1630 (236)   
4 725 18800 (2727)  156±6 (41±2)      1630 (236)   
5 725 26000 (3771)  111±6 (29±2)      1630 (236)   
6 725 35000 (5076)  81±6 (21±2)      1630 (236)  8.5 (2.2) 
(1) Not a spec. For reference only.
(2) Margin pressure = pump discharge pressure minus load pressure.
(3) Value given is for each rotating assembly

Table 9
Part Number  Rotation  Step  Input Speed  Discharge Pressure kPa (psi)  Discharge Flow Lpm (gpm)  (1)Load Pressure kPa (psi)  (2)Margin Pressure kPa (psi)  Powershift Pressure kPa (psi)  (3)Max Case Drain Flow Lpm (gpm) 
259-0782  CW  600  132±6 (35±2)      1630 (236)   
2 725 163±6 (43±2)      1630 (236)   
3 725 16000 (2321)  81 (21)  18050 (2618)  1950 (283)  1630 (236)   
4 725 18800 (2727)  156±6 (41±2)      1630 (236)   
5 725 26000 (3771)  111±6 (29±2)      1630 (236)   
6 725 35000 (5076)  81±6 (21±2)      1630 (236)  8.5 (2.2) 
(1) Not a spec. For reference only.
(2) Margin pressure = pump discharge pressure minus load pressure.
(3) Value given is for each rotating assembly

Table 10
Part Number  Rotation  Step  Input Speed  Discharge Pressure kPa (psi)  Discharge Flow Lpm (gpm)  (1)Load Pressure kPa (psi)  (2)Margin Pressure kPa (psi)  Powershift Pressure kPa (psi)  (3)Max Case Drain Flow Lpm (gpm) 
259-0823  CW  600  117±6 (31±2)      2110 (306)   
2 725 144±10 (38±3)      2110 (306)   
3 725 20000 (2900)  90 (24)  18100 (2625)  1900 (275)  2110 (306)   
4 725 26800 (3887)  140±6 (37±2)      2110 (306)   
5 725 30000 (4351)  125±6 (33±2)      2110 (306)   
6 725 35000 (5076)  105±6 (28±2)      2110 (306)  7.7 (2.0) 
(1) Not a spec. For reference only.
(2) Margin pressure = pump discharge pressure minus load pressure.
(3) Value given is for each rotating assembly

Table 11
Part Number  Rotation  Step  Input Speed  Discharge Pressure kPa (psi)  Discharge Flow Lpm (gpm)  (1)Load Pressure kPa (psi)  (2)Margin Pressure kPa (psi)  Powershift Pressure kPa (psi)  (3)Max Case Drain Flow Lpm (gpm) 
266-7952  CW  600  132±6 (35±2)      1630 (236)   
2 725 163±6 (43±2)      1630 (236)   
3 725 16000 (2321)  81 (21)  14050 (2038)  1950 (283)  1630 (236)   
4 725 18800 (2727)  156±6 (41±2)      1630 (236)   
5 725 26000 (3771)  111±6 (29±2)      1630 (236)   
6 725 35000 (5076)  81±6 (21±2)      1630 (236)  8.5 (2.2) 
(1) Not a spec. For reference only.
(2) Margin pressure = pump discharge pressure minus load pressure.
(3) Value given is for each rotating assembly

Table 12
Part Number  Rotation  Step  Input Speed  Discharge Pressure kPa (psi)  Discharge Flow Lpm (gpm)  (1)Load Pressure kPa (psi)  (2)Margin Pressure kPa (psi)  Powershift Pressure kPa (psi)  (3)Max Case Drain Flow Lpm (gpm) 
295-9676  CW  600  147±6 (39±2)      2780 (403)   
2 725 177±6 (47±2)      2780 (403)   
3 725 16000 (2321)  81 (23)  14050 (2038)  1950 (283)  2780 (403)   
4 725 23000 (3335)  167±6 (44±2)      2780 (403)   
5 725 29000 (4206)  130±6 (34±2)      2780 (403)   
6 725 35000 (5076)  107±6 (28±2)      2780 (403)  10 (2.6) 
(1) Not a spec. For reference only.
(2) Margin pressure = pump discharge pressure minus load pressure.
(3) Value given is for each rotating assembly

Table 13
Part Number  Rotation  Step  Input Speed  Discharge Pressure kPa (psi)  Discharge Flow Lpm (gpm)  (1)Load Pressure kPa (psi)  (2)Margin Pressure kPa (psi)  Powershift Pressure kPa (psi)  (3)Max Case Drain Flow Lpm (gpm) 
369-9676  CW  600  147±6 (39±2)      2780 (403)   
2 725 177±6 (47±2)      2780 (403)   
3 725 16000 (2321)  81 (23)  14050 (2038)  1950 (283)  2780 (403)   
4 725 23000 (3335)  167±6 (44±2)      2780 (403)   
5 725 29000 (4206)  130±6 (34±2)      2780 (403)   
6 725 35000 (5076)  107±6 (28±2)      2780 (403)  10 (2.6) 
(1) Not a spec. For reference only.
(2) Margin pressure = pump discharge pressure minus load pressure.
(3) Value given is for each rotating assembly

Table 14
Tooling 
Part Number  Adapter Plate  Drive Adapter  Suction Adapter  Split Flange  Flange Adapter  Pilot Pressure Port  Case Drain Port 
146-5153  1U-9129  9U-7521  457-2323  5P-8077  9U-7441  9/16-18 STOR  1 5/16-12 STOR 
153-8181  1U-9129  9U-7521  457-2323  5P-8077  9U-7441  9/16-18 STOR  1 5/16-12 STOR 
158-9066  1U-9129  9U-7521  457-2323  5P-8077  9U-7441  9/16-18 STOR  1 5/16-12 STOR 
214-1034  1U-9129  9U-7521  457-2323  5P-8077  9U-7441  9/16-18 STOR  1 5/16-12 STOR 
225-4493  1U-9129  246-1588  457-2323  5P-8077  9U-7441  9/16-18 STOR  1 5/16-12 STOR 
259-0782  1U-9129  246-1588  457-2323  5P-8077  9U-7441  9/16-18 STOR  1 5/16-12 STOR 
259-0823  1U-9129  9U-7521  457-2323  5P-8077  9U-7441  9/16-18 STOR  1 5/16-12 STOR 
266-7952  1U-9129  246-1588  457-2323  5P-8077  9U-7441  9/16-18 STOR  1 5/16-12 STOR 
295-9676  1U-9129  246-1588  457-2323  5P-8077  9U-7441  9/16-18 STOR  1 5/16-12 STOR 
369-9676  1U-9129  246-1588  457-2323  5P-8077  9U-7441  9/16-18 STOR  1 5/16-12 STOR 

Caterpillar Information System:

315C Excavator Capacities (Refill)
Bench Test Procedure for Hydraulic Piston Pumps{5070} Bench Test Procedure for Hydraulic Piston Pumps{5070}
Test Sequence for Capsule Type Fuel Nozzles{0782} Test Sequence for Capsule Type Fuel Nozzles{0782}
303 CR Mini Hydraulic Excavator Engine Supplement Muffler - Remove and Install
3054E Industrial Engine Camshaft Bearings - Remove and Install
MP15, MP20, MP30 and MP40 Multi-Processors Reference Material
3512 and 3516 EUI Engines for 784B, 785B, 789B and 793B Off-Highway Trucks ECM Output Circuit (Engine Coolant Temperature Lamp)
3512 and 3516 EUI Engines for 784B, 785B, 789B and 793B Off-Highway Trucks ECM Output Circuit (Engine Oil Pressure Lamp)
3512 and 3516 EUI Engines for 784B, 785B, 789B and 793B Off-Highway Trucks ECM Output Circuit (Engine ON Signal)
312C, 322C, 325C and 330C Excavators and TK1051 Track Feller Buncher Air Conditioning and Heating Air Conditioner Lines
M318C and M322C Excavators Machine Systems Joystick Control - Remove - Boom and Bucket
M318C and M322C Excavators Machine Systems Joystick Control - Install - Boom and Bucket
2002/10/28 Examine Failed Starting Motors to Understand the Reason for Failure {1453}
C15 Petroleum Generator Set Engines Electric Starting Motor
320C Excavator Reference Material
312C and 315C Excavators Tool Control System Implement Electronic Control Module (Tool)
P16, P20, P25, P28, P40 and P60 Pulverizer Maintenance Interval Schedule
3054E Industrial Engine Flywheel - Remove
P16, P20, P25, P28, P40 and P60 Pulverizer Reference Material
2002/10/21 A Special Instruction, REHS1341, "Procedure for the Installation of the Reversing Fan Kit" Is Available {1356}
SR17, SR18, SR21, SR318 and SR321 Snowblowers Daily Inspection
M313C, M315C, M316C, M318C, M318C MH, M322C and M322C MH Excavators Electronic System RTC Compensation Interval Menu
3054C Industrial Engine and C4.4 Marine Auxiliary Generator Set Electrical System
322C Excavator Safety Messages - Arrangement I
Back to top
The names Caterpillar, John Deere, JD, JCB, Hyundai or any other original equipment manufacturers are registered trademarks of the respective original equipment manufacturers. All names, descriptions, numbers and symbols are used for reference purposes only.
CH-Part.com is in no way associated with any of the manufacturers we have listed. All manufacturer's names and descriptions are for reference only.